

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

1

Modeling Organizational Rules in the Multiagent
Systems Engineering Methodology

Scott A. DeLoach

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

sdeloach@cis.ksu.edu

Abstract. Recently, two advances in agent-oriented software engineering have
had a significant impact: the identification of interaction and coordination as
the central focus of multiagent systems design and the realization that the
multiagent organization is distinct from the agents that populate the system.
This paper presents detailed guidance on how to integrate organizational rules
into existing multiagent methodologies. Specifically, we look at the Multiagent
Systems Engineering models to investigate how to integrate the existing
abstractions of goals, roles, tasks, agents, and conversations with organizational
rules and tasks. We then discuss how designs can be implemented using
advanced as well as traditional coordination models.

1 Introduction

Over the last few years, two conceptual advances in agent-oriented software
engineering have had a significant impact on our approach toward building
multiagent systems. The first of these was identification of interaction and
coordination as the central focus of multiagent systems design. That is, interaction
and coordination play a central role in the analysis and design of multiagent systems
and makes the multiagent approach significantly different from other approaches
towards building distributed or intelligent systems. This realization lead to several
new methodologies for building multiagent systems that focused on the interaction
between agents as the critical design aspect. Several agent-oriented methodologies fit
this form including MaSE [3], Gaia [10], and MESSAGE [7].

The second, more recent advancement is the division of the agents populating a
system from the system organization [11]. While agents play roles within the
organization, they do not constitute the organization. The organization itself is part
of the agent�s environment and defines the social setting in which the agent must
exist. An organization includes organizational structures as well as organizational
rules, which define the requirements for the creation and operation of the system.
These rules include constraints on agent behavior as well as their interactions. There
are separate responsibilities for agents and organizations; the organization, not the
agents, should be responsible for setting and enforcing the organization rules.

sdeloach
R. Cohen and B. Spencer (Eds.): AI 2002, LNAI 2338, pp. 1-15, 2002. Springer-Verlag Berlin Heidelberg 2002

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

2

Organizational design has many advantages over traditional multiagent systems
design methods. First, it defines a clean separation between the agent and the
organization in which the agent works, which in turn simplifies each design. In
traditional agent-oriented approaches, the rules that govern interaction must be
incorporated into the agents themselves, thus intertwining the organizational design in
various agent designs. Secondly, separating the organization from the agent allows
the developer to build a separate organizational structure that can enforce the
organizational rules. This is especially critical in open systems where we do not
know the intent of the agents working within the system.

While these advances are rather recent, there have been some discussions on how
to incorporate them into existing multiagent systems methodologies. For instance,
there is a proposal to modify the Gaia multiagent systems methodology to incorporate
the notion of social laws [12]. Other approaches view the organization as a separate
institutional agent [9]. However, these proposals have been made at a high level and
do not provide concrete guidance on how to use existing analysis and design
abstractions with advanced coordination models and organizational concepts. Also,
the advent of more powerful coordination models, such as hybrid coordination media,
have allowed us to imagine new ways of implementing organization rules. With
these advanced models, we can now embed organizational rules in the coordination
media instead of implementing them internal to the individual agents [1].

The goal of this paper is to present more detailed guidance on how to integrate
organizational rules into existing multiagent methodologies. Specifically, we will
look at the Multiagent Systems Engineering (MaSE) analysis and design models to
investigate how to integrate the existing abstractions of goals, roles, tasks, agents, and
conversations with organizational rules. We will also briefly take a look at how we
can use advanced coordination models to implement multiagent systems that separate
agents from the organizational rules that govern them. We believe that extending
existing conversation-based multiagent analysis and design approaches with
organizational rules is a major step toward building coherent, yet adaptive multiagent
systems in a disciplined fashion. While one might be tempted to simply throw out the
concept of conversations altogether in favor of some of the more powerful models
being proposed, we resist that urge for two basic reasons. First, conversation-based
approaches are widely understood and provide an easily understandable metaphor for
agent-to-agent communication. Second, conversation-based approaches have shown
that they are verifiable and give designers some measure of system coherence [5].
Using the full power of these coordination models without restraint could lead to
multiagent system designs that are not understandable, verifiable, or coherent.

In Section 2, we discuss how to model organizational rules MaSE. In Section 2.1,
we look at the analysis phase where we add the notion of organizational rules to the
existing MaSE analysis models. In Section 2.2 we show how to map the various
analysis artifacts, including organizational rules, into an enhanced design model that
explicitly models the organization through the notion of organizationally based tasks.
Finally, in Section 3 we show how these organizational tasks might be implemented.
We end with a discussion of our results and conclusions in Section 4.

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

3

2 Modeling Organizational Rules In MaSE

In this section we show how we have extended the MaSE analysis and design
phases to take advantage of the concept of organizational rules. In the analysis
phase, we add a new model, the organizational model, to capture the organizational
rules themselves, while in the design phase, we introduce the concept of
organizationally-based tasks to carry out specific tasks that are part of the
organization and do not belong to a specific agent. These tasks are often used to
implement and enforce the organizational rules defined during analysis.

Throughout this paper, we will use the conference management example as
defined in [11]. The conference management system is an open multiagent system
supporting the management of various sized international conferences that require the
coordination of several individuals and groups. There are five distinct phases in
which the system must operate: submission, review, decision, and final paper
collection. During the submission phase, authors should be notified of paper receipt
and given a paper submission number. After the deadline for submissions has passed,
the program committee (PC) has to review the papers by either contacting referees
and asking them to review a number of the papers, or reviewing them themselves.
After the reviews are complete, a decision on accepting or rejecting each paper must
be made. After the decisions are made, authors are notified of the decisions and are
asked to produce a final version of their paper if it was accepted. Finally, all final
copies are collected and printed in the conference proceedings. The conference
management system consists of an organization whose membership changes during
each stage of the process (authors, reviewers, decision makers, review collectors,
etc.). Also, since each agent is associated with a particular person, it is not
impossible to imagine that the agents could be coerced into displaying opportunistic,
and somewhat unattractive, behaviors that would benefit their owner to the detriment
of the system as a whole. Such behaviors could include reviewing ones own paper or
unfair allocation of work between reviewers, etc.

2.1 The Analysis Phase

The purpose of the MaSE analysis phase is to produce a set of roles whose tasks
describe what the system has to do to meet its overall requirements. A role describes
an entity that performs some function within the system. In MaSE, each role is
responsible for achieving, or helping to achieve specific system goals or sub-goals.
Because roles are goal-driven, we also chose to abstract the requirements into a set of
goals that can be assigned to the individual roles. Our approach is similar to the
notions used in the KAOS [6]. The overall approach in the MaSE analysis phase is
fairly simple. Define the system goals from a set of functional requirements and then
define the roles necessary to meet those goals. While a direct mapping from goals to
roles is possible, MaSE suggests the use of use cases to help validate the system goals
and derive an initial set of roles. As stated above, the ultimate objective of the
analysis phase is to transform the goals and use cases into roles and their associated

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

4

tasks since they are forms more suitable for designing multiagent systems. Roles
form the foundation for agent classes and represent system goals during the design
phase, thus the system goals are carried into the system design. To support
organizational rules, the MaSE analysis phase was extended with an explicit
organizational model, which is developed as the last step in the analysis phase and is
defined using concepts from the role and ontology models.

Role Model
Due to space limitations, we will skip the goal and use case analysis for the

conference system example and jump right to the role model. The MaSE role model
depicts the relationships between the roles in the conference management system, as
shown in Figure 1. In Figure 1, a box denotes each role while a directed arrow
represents a protocol between roles, with the arrows pointing away from the initiator
to the responder. Notice that while we referred to the PC chair and PC members in
the problem description, we have intentionally abstracted out the roles played by
those typical positions into partitioning, assigning reviews, reviewing papers,
collecting reviews, and making the final decision. As we will see later, this provides
significant flexibility in the design phase. The system starts by having authors submit
papers to a paper database (PaperDB) role, which is responsible for collecting the
papers, along with their abstracts, and providing copies to reviewers when requested.
Once the deadline has past for submissions, the person responsible partitioning the
entire set of papers into groups to be reviewed (the Partitioner role) asks the PaperDB
role to provide it the abstracts of all papers. The Partitioner partitions the papers and
assigns them to a person (the Assigner) who is responsible for finding n reviewers for
each paper. Once assigned a paper to review, a Reviewer requests the actual paper
from the PaperDB, prepares a review, and submits the review to the Collector. Once
all (or enough) of the reviews are complete, the Decision Maker determines which
papers should be accepted and notifies the authors.

Assigner

Partitioner

Reviewer

Collector

PaperDB
retrieve abstracts

make assignments submit review

retrieve paper

review papers

Author
submit paper

Decision
Maker

get reviews

inform authors

Figure 1. Role Model for Conference Management System

Thus, we have identified seven explicit roles. However, in MaSE, we do not stop
at simply identifying the roles, we also identify the tasks that the roles must perform
in accomplishing their goals. Therefore, a more detailed version of the conference
management system role model is shown in Figure 2. In MaSE, we have extended

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

5

the traditional role model by adding the tasks (shown using ellipses attached to each
role). Generally, each role performs a single task, whose definition is straightforward
and documented in a concurrent task diagram (not discussed here due to space
limitations), which define agent behaviour and interaction via finite state machines.
However, some roles, such as the Paper DB or Reviewer roles have multiple tasks.
For instance, the Paper DB role has three tasks: Collect Papers, Distribute Papers, and
Get Abstracts. While the tasks are related, they are distinct and are thus modelled
separately. The Collect Papers task accepts papers, ensures they are in the right
format and meet all the eligibility requirements. The Get Abstracts task extracts the
abstract from submitted papers and sends them to a Partitioner. The Distribute Papers
task simply distributes accepted papers to the appropriate Reviewers when requested.

Assigner

Partitioner

Reviewer
Collector

PaperDB

retrieve abstracts

make assignments
submit reviews

retrieve paper

review
papers

Author

submit paper

Decision
Maker

get reviews

inform
authors

Collect
Reviews

GetAbstracts
Collect
Papers

Distrib
Papers

WritePaper

SubmitPaper

Select
PapersReview

Paper
Negotiate

Papers

Partition
Papers

Assignto
Reviewers

Figure 2. Expanded MaSE role model

Ontology Model
The next step in the MaSE analysis phase is to develop an Ontology Model, which

defines the data types and their relationships within the system [4]. Figure 3 shows
an ontology model for the conference review system. The ontology is focused around
the central data type, a paper, each with an associated abstract and a set of reviews.
Given the ontology, we can talk about the reviews a paper has received
paperReview(p) or a paper�s abstract paperAbstract(p), etc. There are also
constraints placed on the data via the ontology. For instance, each abstract must have
exactly one paper and each paper must have exactly one abstract. Also, a review can
only exist on a single paper, while a paper may have any number of reviews on it
(including none). Thus several organizational constraints can be defined in the
ontology itself. Using the ontology model, we can extract a number of functions to
describe the data in our system. The functions and their resulting types for the
conference management system are shown in Table 1. These functions can be used in

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

6

conjunction with protocol functions to describe many relationships, as we will see in
the next section.

wholePaperpaperAbstract paperReviewreviewedPaper
11 1 0 .. *

Abstract Paper
author : String

Review

Figure 3. Conference Management Ontology

Table 1. Functions Derived from Ontology

paperReview(p) {Review}
paperAbstract(p) Abstract
reviewedPaper(r) Paper
wholePaper(a) Paper

Organizational Model
In our previous treatments of MaSE, we would go to the design phase at this point.

However, this is precisely the point at which we can effectively begin to identify
organizational rules. By definition, organizational rules define constraints on agent
behavior and their interactions. At the analysis level, this equates to restrictions on
the roles an agent may play or how an agent may interact with other agents. To state
these rules in a formal manner, we must have a language based on analysis artifacts.
This language is defined by the role model, the ontology model, and a set of meta-
predicates.

We can use the protocols and roles defined in the Role Model to describe how the
system will operate, which will be very useful when defining organizational rules.
For instance, we can refer to an agent playing a particular role. We annotate this
using a data type like notation, for instance, r:Reviewer, which states that agent r is of
type (i.e., plays the role of a) Reviewer. Thus if we wanted to state that the agent
making final decisions cannot be an author of any papers for the conference, we
could say

∀ a:Author, d:DecisionMaker d ≠ a

Another way to state the same requirement would be through the use of a meta-
predicate Plays, which states that a particular agent plays a particular role. Therefore,
we could state the same requirement as

∀ a:Agent ¬(Plays(a, Author) ∧ Plays(a, DecisionMaker))

The use of meta-predicates can be useful in stating requirements. For instance, if
we want all agents in the system to be authors, we can simply state, ∀ a: Agent

Plays(a, Author), which is simpler than using the data type notation.
We will also need to refer to the relationships between agents (or roles) in the

system. Since the only relationships we have defined in MaSE are via protocols, we
use protocol instances to specify relationships. We refer to a protocol between two
agents as prototocolName(initiator, responder, data), which states that a protocol
exists between two roles, initiator and responder, and concerns a particular piece of

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

7

data. The initiator and responder must be capable of playing the appropriate roles
and the data must refer to data passed between roles via the protocol. Thus the
expression, reviewPapers(a, r, p), states that a protocol named reviewPapers exists
between the roles a and r (involving a paper, p), which must be capable of playing the
Assigner and Reviewer roles respectively. Thus if we wanted to state that a
Reviewer can only review papers for one Assigner, we could make the following
rule.

∀ a1, a2:Assigner, r:Reviewer, p1, p2:Paper
reviewPapers(a1, r, p1) ∧ reviewPapers(a2, r, p2) ⇒ a1 = a2

Although we can state some requirements using only concepts from the role
model, there are other times where we must relate roles and their relationships based
on particular data in the system. For instance, in the conference management system
we are interested in the relationships between roles based on the papers they submit,
review, or collect. Thus we must be able to talk about the data in the system as well,
which is defined by the ontology model.

In the original paper describing the conference management system in terms of
organizational rules [11], the authors defined seven organizational rules. While the
authors stated the rules using a formal notation, there was no real definition of how
the rules mapped to the artifacts of their analysis and design. Here we will redefine
them using the notation presented above based on the role and ontology models. The
rules as originally presented are shown below using the temporal operators as defined
in Table 2.

1. ∀p : #(reviewer(p)) ≥ 3
2. ∀i, p : Plays(i, reviewer(p)) ⇒ ! " ¬Plays(i, reviewer(p))
3. ∀i, p : Plays(i, author(p)) ⇒ " ¬Plays(i, reviewer(p))
4. ∀i, p : Plays(i, author(p)) ⇒ " ¬Plays(i, collector(p))
5. ∀i, p : participate(i, receivePaper(p))

⇒ " initiate(i, submitReview(p))
6. ∀i, p : participate(i, receivePaper(p))

 B initiate(i, submitReview(p))
7. ∀p : [submittedReviews(p) > 2] B initiate(chair, decision(p))

The first rule states that there must be at least three reviewers for each paper (# is

cardinality) while rule two keeps a reviewer from reviewing the same paper more
than once. Rules three and four attempt to limit selfish agent behaviour by ensuring
that a paper author does not review or collect reviews of his or her own paper. The
last three rules describe appropriate system operation. Rule five states that if a paper
is received, it should eventually be reviewed. Rule six requires that a paper must
actually be received before a review can be submitted on it while rule seven requires
that there be at least two reviews before a paper can be accepted or rejected.

Table 2. Temporal Operators

! ϕ ϕ is true next
" ϕ ϕ is always true

 " ϕ ϕ is eventually true
ϕ B φ ϕ is true before φ is true

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

8

The first organizational rule states that each paper should have at least three

reviewers. While we might be tempted to use the ontology model to say that each
paper should have three or more reviews, this does not adequately capture the
requirement. What we want to state is that three agents, playing the part of reviewers
should be assigned to each paper, which requires more knowledge than is in the
ontology. It requires that we combine relationships and data definitions from the
ontology with relationships (defined by protocols) defined in the role model. What
we need to say is that for a given paper, p, there must be at least three reviewers
assigned. Since the review assignment process is accomplished via the reviewPapers
protocol between the Assigner role and the Reviewer role, there must be three
instances of that protocol for paper p. Thus we can state the requirement as

∀ p:Paper, a:Assigner, r:Reviewer #{r | reviewPapers(a,r,p)} ≥ 3

The second rule keeps a reviewer from reviewing the same paper more than once.
While this appears be subsumed by our first rule, in fact it is not. Our first rule states
that we must have three unique reviewers, but it does not stop them from submitting
multiple reviews on the same paper. To accomplish this, we must limit the number of
submitReview protocols that can exist between the Reviewer role and any Collector
roles for a given paper. This is formalized as

∀ r1, r2:Review, r:Reviewer, c1, c2:Collector
submitReview(r,c1,r1) ⇒ ! " (¬submitReview(r,c2,r2)

∨ reviewedPaper(r1) ≠ reviewedPaper(r2))

The next two rules (three and four) limit selfish agent behavior by ensuring that a
paper author does not review or collect reviews of his or her own paper. The first of
these rules states that an author may not review his or her own paper while the second
does not let the author acts as a collector of the reviews on his or her paper. There
two approaches to modeling an author. As defined in [11], we could assume that the
author is the one who submits the paper and identify the author as the role that
submits the paper to the PaperDB role via the submitPaper protocol. The second
approach would be to use the author attribute of the paper object and compare it to
the reviewer. This would require the ability to identify the name of the Reviewer
role, which would require an extension to the MaSE role model. Therefore, we will
use the first approach and define the third rule as

∀ a:Author, d:PaperDB, p:Paper, s:Assigner, r:Reviewer, c:Collector,
r1:Review submitPaper(a,d,p) ⇒

¬(submitReview(r,c,r1) ∧ a = r ∧ r1 = paperReview(p))

Likewise, the fourth rule ensures the author does not participate as a collector.
∀ a:Author, d:PaperDB, p:Paper, r:Reviewer, c:Collector, r1:Review

submitPaper(a,d,p) ⇒ ¬(submitReview(r,c,r1)
∧ a = c ∧ r1 = paperReview(p))

Finally, the last three rules define the way in which the system should operate. Rule
five simply requires that if a paper is submitted via the sumbitPaper protocol, a
review should eventually be submitted to a collector by via the submitReview
protocol. This rule is state straightforwardly using the appropriate temporal operator.

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

9

∀ a:Author, d:PaperDB, p:Paper, r:Reviewer, c:Collector, r1:Review
submitPaper(a,d,p)

⇒ " submitReview(r,c,r1) ∧ r1 = paperReview(p))

Rule six, requiring the paper be submitted before it can be reviewed can be defined as
∀ a:Author, d:PaperDB, p:Paper, r:Reviewer, c:Collector, r1:Review

submitPaper(a,d,p) B (submitReview(r,c,r1) ∧ r1 = paperReview(p))

Finally, the last rule requiring at least two submitted reviews per paper before a
decision can be rendered can be encoded as

∀ r: Reviewer, c:Collector, r1:Review, m:DecisionMaker, a:Author,
p:Paper #{r1 | submitReview(r,c,r1) ∧ r1 = paperReview(p)} ≥ 2

B (informAuthor(m,a,p))

During the analysis phase, these organizational rules are collected and defined in
terms of the ontology and role model; however, they are integrated into the overall
system design in the next stage. It is at this point that the designer must decide how
to monitor or enforce these rules. As we will see, the rules can be assigned to a
particular agent in the design or they can be implemented via conversational,
monitoring, or enforcement tasks as organizational tasks.

2.2 The Design Phase

The initial step in the MaSE design phase is to define agents from the roles defined
in the analysis phase. The product of this phase is an Agent Class Diagram, as shown
in Figure 4, which depicts the overall agent system organization defined by agent
classes and conversations between them. An agent class is a template for a type of
agent in the system and is analogous to an object class in object-orientation while an
agent is an instance of an agent class. During this step, agent classes are defined in
terms of the roles they will play and the conversations in which they must participate.
In the diagram, boxes denote agent types (with the roles it plays listed under its name)
while directed arrows represent conversations between agent types with a similar
semantics to role model protocols.

Business

Seller

Consumer

Buyer

auctionProduct

Figure 4. Agent Class Diagram

In this paper we extend the Agent Class Diagram with organizationally based
tasks, which is a new concept that allow us to model aspects of the organization
independently of the agents. Organizationally based tasks are tasks that are assigned
to the organization (as opposed to a particular agent) and can be used to implement
social tasks, monitor system and individual agent behavior, and enforce
organizational and security rules. An example of an organizationally based task is
shown in Figure 5. The Seller and Buyer boxes are agents while the rounded
rectangle denotes the organization. The ellipse in the organization box is an
organizationally based task, Auction, which was derived from a task belonging to a

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

10

role in the role model. In the initial step of the design phase, the designer determines
the roles each agent type will play as well as which roles (and tasks) will be relegated
to the organization. The designer may also create new organizationally based tasks
to implement and enforce the organizational rules defined during the analysis phase.

In the remainder of this section, we take our analysis of the conference
management system, including the organizational rules, and show how it can be
developed into a number of different designs using organizationally-based tasks in
conjunction with conventional MaSE Agent Class Diagrams. The goal here is to
show a number of different options that are available with the notion of
organizationally based tasks, not to advocate a particular approach as being
necessarily better in all instances.

Business

Seller

Consumer

Buyer

Auction
Organization

sellProduct buyProduct

Figure 5. Organizationally-Based Task

Design 1 - Traditional
Traditional multiagent design approaches, as advocated in [3], might result in the

design shown in Figure 6. In this design, various roles are combined into agents. For
instance, the PC Chair agent plays the Partitioner, Collector, and Decision Maker
roles while the PC Member agent plays both the assigner and reviewer roles. Outside
of author agents, the only other agent is the DB agent, which provides an interface to
the database containing the papers, abstracts, and author information, etc.

PCMember

Assigner
Reviewer

PCChair

Partitioner
Collector

Decison Maker

DB

PaperDB

retrieve
abstracts

make assignments

collect reviews

retrieve
paper

Author

Author

submit paper

inform
authors

Figure 6. Traditional design

Unfortunately, the traditional multiagent design described above does not provide
the separation of agent tasks from social, or organizational, tasks, which is desirable
for extensible, open multiagent systems [2]. To ensure the organizational rules are
enforced, we must interweave the organizational rules into the individual agents

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

11

themselves. For example, the only place we can check to ensure that at least two
reviews were completed before the decision to accept or reject a paper was made
(rule 7) is in the PC Chair agent itself. This forces us to rely on self-policing agents,
which, if we assume the possibility of self-interested agents, is a less than desirable
approach to ensuring the enforcement of organizational rules.

Design 2 � Assigning Tasks to the Organization
As advocated by some [2], the appropriate place to monitor and enforce

organizational rules is in the organization itself. Thus, using the same analysis, we
have created a new design that uses organization-based tasks to implement the
PaperDB and Collector roles. Figure 7 shows the details of this new design. Notice
that the tasks of the PaperDB and the Collector roles have been assigned to the
organization. In effect, their tasks become part of the organization as
organizationally based tasks.

PCMember

Assigner

PCChair

Partitioner
DecisionMaker

Reviewer

Reviewer
retrieve
abstracts

make assignments

collect
reviewsretrieve paper

review papers Author

Author

submit
paper

get reviews

inform
authors

CollectReviewsGetAbstracts CollectPapersDistribPapers
Organization

Figure 7. Design with explicit tasks

By being part of the organization, the Get Abstracts, Distribute Papers, Collect
Papers, and Collect Reviews tasks can more easily support the conference
management organizational rules. This is because the information collected and used
by these tasks can easily be shared through a common database. For instance, The
Distribute Papers task can enforce rule 3 (an author cannot review his or her own
paper) by simply checking the reviewer against the paper author. Likewise, the
Collect Reviews task can monitor rule 5 (if a reviewer receives a paper, he or she
must eventually submit a review) and send warnings if reviews are not submitted in a
timely fashion. The same task can also enforce rule 6 (the paper must be received by
a reviewer before the review is submitted) by not accepting reviews until the paper
has actually been requested, as well as rule 7 (there must be at least two reviews
before the chair can make a decision) by only sending reviews once there are at least
two of them. This design approach also allows the organizational rules to be updated
without necessarily affecting the individual agent designs.

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

12

Design 3 � Designing New Organizational Roles
A third design that does not assign tasks from the role model to the organization is

shown in Figure 8. However, we still use organizationally based tasks to monitor and
enforce the organizational rules presented above. We do this by creating new tasks in
the design to implement the organizational rules. For instance, in Figure 8, there are
three organizational tasks (Monitor Num Reviews, Monitor Decisions, and Monitor
Reviewers) that did not exist in the role model, but were added by the designer to
monitor/enforce organizational rules 2, 3, and 7. The dashed line between the tasks
and the conversations denote that the tasks monitor those conversations by executing
when the conversations are started. These tasks may simply monitor the
communication between agents and either display or log the information of interest.
For instance, the Monitor Decision task might monitor the inform author
conversations and log only those decisions that are made without the required number
of reviews being made. Note that the Monitor Decision task would have access to
this information via tuples shared by the Monitor Num Reviews task.

PCMember

Assigner

PCChair

Partitioner
Collector

Decison Maker

DB

PaperDB

retrieve
abstracts

make
assignments

collect reviews

retrieve
paper

Author

Author

submit
paper

inform authors

Reviewer

Reviewerreview papers

Monitor
Reviewers

(2, 3)

Monitor Num
Reviews (7)

Monitor
Decision (7)Organization

Figure 8. Design with monitoring/conversational tasks

A task that simply monitors a conversation is shown in Figure 9. In modelling
monitoring tasks, we assume that the task receives a message before the agent on the
other end of the conversation and must forward the message before the intended
recipient can receive it. In Figure 9a this is shown by the receive event that initiates
the transition from the start state. Once the message is received, the Monitor
Decision task validates it (in this case, that it has had at least two reviews) and, if
valid, passes the message along to the intended recipient.

We can use the same basic design as shown in Figure 8 but use tasks that do more
than just monitor the conversations; they may actually interrupt the conversation or
modify the data being passed between agents, thus providing correction either
directly or indirectly with the offending agents. For example, Figure 9b defines a
task that intercepts the notice message being sent to an author; if the correct number
of reviews has not been accomplished, the task sends the PC Chair a message stating

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

13

that the decision was invalid instead of forwarding the notice message on to the
author.

Of course, a task that communicates directly with agents in a conversation forces
the agents involved to be able to handle additional communication. Thus, the original
inform authors conversation (from the viewpoint of the PC Chair) must be modified
to work with this type of task. Specifically, the PC Chair�s side of the conversation
must be able to handle an invalidDecision message from the organization. Thus, in
Figure 10, we have modified the conversation to accept the invalidDecision after
sending the original notice. This is an example of the strength of using a
conversation based design approach. Using conversations, it is possible to trace the
sequence of possible messages through the system and thus automatically verify that
all conversations and tasks are consistent and do not cause unwanted side effects such
as deadlock.

validateDecison

valid = validReviews(paper)

receive(notice(accept, paper), pcchair, author)

[NOT valid]

validateDecison

valid = validReviews(paper)

receive(notice(accept, paper), pcchair, author)

send(notice(accept, paper), pcchar, author)

[valid]
send(notice(accept, paper), pcchair, author) [valid]

send(notice(accept, paper), pcchair, author)

[NOT valid]
^ send(invalidDecision(paper), null, pcchair)

logDecison

logDecision(paper, pcchair)

(a) Monitoring Only (b) Conversational

Figure 9. Monitor Decision Task

^ notice(accept, paper)

acknowledge()

wait

^ notice(accept, paper),

acknowledge()

wait invalidDecisoin(paper)

checkDecision

checkD(paper)

Figure 10. Inform Authors conversation (original & modified)

3 Implementation

Ideally, organization based tasks would be implemented using a coordination
model that has equivalent structures, such as hybrid coordination media. Hybrid

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

14

coordination models are data-centered coordination models that include (1) a
logically centralize repository where the agents read and write data and (2) a set of
reactions that are functions that react to, and can read and modify data in the data
store [1] [8]. In a hybrid coordination media, the media itself has the ability to see the
communication between agents and perform tasks in reaction to those
communications. Thus we could easily model organizationally based tasks as
reactions in hybrid coordination media. For role model tasks that are assigned to the
organization, the hybrid model is ideal since the reaction is not under control of an
individual agent, but is part of the organization itself and thus is started at system
initialisation. Such tasks may include controlling the introduction of new agents in
the system. Tasks that intercept messages and forwarding them on if they are valid,
as well as those that just monitor messages are also easily implemented in hybrid
models. The ability of reactions to read all data in the data store allows them to
monitor messages and take action when necessary. For example, if authors are
required to submit papers in PDF format, we could enforce this rule via a reaction
that would automatically convert non-PDF formats to PDF; the reaction would simply
extract any non-conforming papers and replace them with the appropriate PDF
version.

While useful, such an advanced coordination models are not required to take
advantage of an organizational design approach. While it might be less efficient,
these designs could also be implemented using a more traditional message oriented
middleware component. One approach would be to build an �organization� agent (or
agents) that would handle all the organization tasks that would normally be assigned
to reactions in a hybrid coordination media. Using this approach, all critical
communications can be routed through organizationally based tasks to ensure the
organizational rules are adhered to. Whether using a hybrid coordination media or
organizational agents, the advantages based on separating organizational tasks rules
from the agents would remain.

4 Results and conclusions

The goal of this paper was to present our approach toward integrating
organizational rules within the MaSE methodology. To accomplish our goal, we
extended the MaSE analysis phase with an explicit organizational model, which
defines organizational constraints based on concepts defined in the role and ontology
models. In the design phase, we extended the MaSE Agent Class Diagram with an
explicit organization artifact, which contains its own organizationally based tasks.
We also showed various approaches toward integrating the organizational rules
defined in the analysis model. We also discussed various approaches to
implementing organizational tasks including both hybrid coordination media as well
as traditional message passing media.

While we originally developed MaSE to design closed multiagent systems, the
incorporation of organizational rules moves it toward being useful for the analysis
and design of open systems as well. While MaSE still requires specific coordination

Proceedings of the 15th Canadian Conference on Artificial Intelligence
Calgary, Alberta, Canada. May 27-29, 2002

15

protocols, designers no longer have to rely on incorporating organizational rules into
the agents themselves. The concept of organizational tasks provides a mechanism to
allow agents to enter the system, monitor their behavior, and ensure compliance with
organizational rules and protocols.

REFERENCES

[1] Cabri, G., Leonardi, L., and Zambonelli, F. Implementing Agent Auctions using
MARS. Technical Report MOSAICO/MO/98/001.

[2] Ciancarini, P., Omicini, A., and Zambonelli, F. Multiagent System Engineering:
the Coordination Viewpoint. Intelligent Agents VI. Agent Theories,
Architectures, and Languages, 6th International Workshop (ATAL'99), Orlando
(FL), May 1999, Proceedings. LNAI 1757, Springer-Verlag, 2000.

[3] DeLoach, S.A., Wood, M.F., and Sparkman, C.H. Multiagent Systems
Engineering, The International Journal of Software Engineering and Knowledge
Engineering, Volume 11 no. 3, June 2001.

[4] Dileo, J.M. Ontological Engineering and Mapping in Multiagent Systems
Development. MS thesis, AFIT/GCS/ENG/02M-03. School of Engineering,
Air Force Institute of Technology, Wright Patterson Air Force Base, OH, 2002.

[5] Lacey, T.H., and DeLoach, S.A. Automatic Verification of Multiagent
Conversations. in Proceedings of the Eleventh Annual Midwest Artificial
Intelligence and Cognitive Science Conference, pp. 93-100, AAAI Press,
Fayetteville, Arkansas, April 2000.

[6] Letier, E. Reasoning about Agents in Goal-Oriented Requirements Engineering,
Phd Thesis, Université Catholique de Louvain, Dépt. Ingénierie Informatique,
Louvain-la-Neuve, Belgium, May 2001.

[7] MESSAGE: Methodology for Engineering Systems of Software Agents.
Deliverable 1. Initial Methodology. July 2000. EURESCOM Project P907-GI.

[8] Omicini, A., Denti, E. From Tuple Spaces to Tuple Centres. Science of
Computer Programming 41(3). Elsevier Science B. V., November 2001.

[9] Wagner, G. Agent-Oriented Analysis and Design of Organizational Information
Systems. Proceedings of the 4th IEEE International Baltic Workshop on
Databases and Information Systems, Vilnius, Lithuania, May 2000.

[10] Wooldridge, M., Jennings, N.R., and Kinny, D. The Gaia Methodology for
Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-
Agent Systems. Volume 3(3), 2000.

[11] Zambonelli, F., Jennings, N.R., and Wooldridge, M.J. Organisational Rules as an
Abstraction for the Analysis and Design of Multi-Agent Systems. International
Journal of Software Engineering and Knowledge Engineering. Volume 11,
Number 3, June 2001. Pages 303-328

[12] Zambonelli, F., Jennings, N.R., Omicini, A., and Wooldridge M.J. Agent-
Oriented Software Engineering for Internet Applications. Coordination of
Internet Agents: Models, Technologies, and Applications, Chapter 13. Springer-
Verlag, March 2001.

